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Abstract: We address the uniqueness of the minimal couplings between higher-spin fields

and gravity. These couplings are cubic vertices built from gauge non-invariant connections

that induce non-abelian deformations of the gauge algebra. We show that Fradkin-Vasiliev’s

cubic 2 − s − s vertex, which contains up to 2s − 2 derivatives dressed by a cosmological

constant Λ, has a limit where: (i) Λ → 0; (ii) the spin-2 Weyl tensor scales non-uniformly

with s; and (iii) all lower-derivative couplings are scaled away. For s = 3 the limit yields

the unique non-abelian spin 2− 3− 3 vertex found recently by two of the authors, thereby

proving the uniqueness of the corresponding FV vertex. We extend the analysis to s = 4

and a class of spin 1−s−s vertices. The non-universality of the flat limit high-lightens not

only the problematic aspects of higher-spin interactions with Λ = 0 but also the strongly

coupled nature of the derivative expansion of the fully nonlinear higher-spin field equations

with Λ 6= 0, wherein the standard minimal couplings mediated via the Lorentz connection

are subleading at energy scales
√

|Λ| << E << Mp. Finally, combining our results with

those obtained by Metsaev, we give the complete list of all the manifestly covariant cubic

couplings of the form 1 − s− s and 2 − s− s , in Minkowski background.
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1. Introduction and overview

1.1 No-go and yes-go results for Λ = 0

From a general perspective it is a remarkable fact that the full gravitational couplings

of lower-spin fields involve at most two derivatives in the Lagrangian. For spin s 6 1

the standard covariantization scheme, wherein ∂ → ∇ = ∂ + ω with ω being a torsion-

constrained Lorentz connection, induces the “minimal coupling”
∫
dDxhµνT

µν where T µν is

the Belifante-Rosenfeld stress-tensor which is quadratic and contains up to two derivatives.

Actually, for scalars, Maxwell fields and other Lorentz-invariant differential forms, the

Lorentz covariantization is trivial and the coupling therefore involves no derivatives of the

metric. It is also remarkable that the non-abelian cubic self-coupling of a spin-2 field

contains only two derivatives.

Turning to gauge fields with s > 2 and considering 2− s− s couplings in an expansion

around flat spacetime, the standard scheme breaks down as has been known for a long

time [1 – 3]. These no-go results have recently been strengthened in [4, 5] following a light-

cone method and in [6] with S-matrix tools. More interestingly, in the works [4, 7, 5] some

yes-go results have been obtained. In the specific case of s = 3 , the work [7] provides a

manifestly covariant non-standard four-derivative vertex associated with a nonabelian de-

formation of the gauge algebra. These yes-go results suggest a class of minimal nonabelian1

non-standard vertices containing 2s − 2 derivatives. We wish to emphasize that the exis-

tence of cubic couplings containing 2s−2 derivatives was explicitly shown in [4, 5] although

the light-cone gauge method used therein does not exhibit the nature of the gauge alge-

bra and does not readily allow for the explicit construction of the corresponding covariant

vertices. The results are nonetheless remarkable in that they show the existence of only a

few non-trivial cubic vertices of the general form s− s′− s′′ for massive and massless fields

(bosonic and fermionic) in flat space of arbitrary dimension D > 3 . In the case of integer

spins, the possible vertices have s+s′+s′′−p derivatives where p = 0, 2, . . . , 2min(s, s′, s′′).

In the specific massless 2 − 3 − 3 case, using the BRST-BV cohomological methods

of [9, 10], the vertex of [7] was shown to be unique among the class of vertices that: (i)

contain a finite number of derivatives; (ii) manifestly preserve Poincaré invariance and (iii)

induce a nonabelian deformation of the gauge algebra. This uniqueness result relies on the

fact that other candidate nonabelian deformations cannot be “integrated” cohomologically

to gauge transformations and vertices. We have managed to push the uniqueness analysis

to the case of s = 4 and the unique 2 − 4 − 4 nonabelian vertex is presented in section 4

together with its corresponding gauge algebra and transformations.

We also extend the results of [7] with the cohomological proof in section 5 that the

standard two-derivative minimal couplings 2 − s − s are inconsistent, thereby providing

an alternative proof for the results recently obtained in [4, 5] following light-cone methods

and in [6] following S-matrix methods. In the same section 5, combining the cohomological

approach with the light-cone results of Metsaev [4, 5], we show that there exists only one

1We consider only couplings that truly deform the initial abelian gauge algebra into a nonabelian one,

similarly to what happens when coupling N2 − 1 Maxwell fields in order to obtain the Yang-Mills SU(N)

theory. Interesting results and references on abelian couplings can be found in the review [8].
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nonabelian 2−s−s coupling, which contains 2s−2 derivatives and must be the flat limit of

the well-known nonabelian Fradkin-Vasiliev vertex [11, 12] in AdS , as we verify explicitly

for s = 3. There also exist two abelian covariant 2− s− s vertices containing 2s+2 and 2s

derivatives. Their existence was first found in [4], and we exhibit them here explicitly in

their covariant form. The (2s+2)-derivative vertex is of the Born-Infeld type, whereas the

2s-derivative vertex exists only for D > 5 and is gauge invariant up to a total derivative.

These three vertices, with 2s − 2, 2s and 2s + 2 derivatives, thus exhaust the possibilities

of manifestly Lorentz-covariant 2 − s− s couplings in flat space.

We begin in section 3 by examining the simpler case of 1 − s − s vertices. We build

explicitly the unique, nonabelian 1− s− s coupling, which has 2s− 1 derivatives, together

with the only abelian 1 − s − s vertex, which as 2s + 1 derivatives, thereby completing

the list of all possible nontrivial, manifestly covariant, 1 − s − s couplings. Again, by the

uniqueness of the nonabelian vertex, we know that it is the flat limit of the corresponding

AdS Fradkin-Vasiliev (FV) vertex [11, 12].

1.2 The Fradkin-Vasiliev cancelation mechanism for Λ 6= 0

Under the assumptions that the cosmological constant vanishes and that the Lagrangian

contains at most two derivatives, the standard covariantization of Fronsdal’s action leads

to an inconsistent cubic action of the form2

SΛ=0
2ss [g, φ] =

1

ℓD−2
p

∫ (
R+G+

1

2
Wµνρσβ

µν,ρσ
(2) (φ⊗2)

)
, (1.1)

where ℓp is the Planck length,
∫

=
∫
dDx

√−g, the spin-s kinetic term3 G = 1
2φ

µ(s)Gµ(s)

with the Einstein-like self-adjoint operator4

Gµ(s) = Fµ(s) −
s(s− 1)

4
gµ(2)F

′
µ(s−2) , (1.2)

Fµ(s) = ∇2φµ(s) − s∇µ1∇ · φµ(s−1) +
s(s− 1)

2
∇µ1∇µ2φ

′
µ(s−2) , (1.3)

the covariantized Fronsdal field strength. The symbol β(2) denotes a dimensionless sym-

metric bilinear form, Wµνρσ is the spin-2 Weyl tensor, and (ℓp)
2W and φ are assumed to

be weak fields. A quantity O has a regular weak-field expansion if O =
∑∞

n=n(O)

(n)

O where
(n)

O scales like gn if the weak fields are rescaled by a constant factor g, and we shall refer

to
(n)

O as being of nth in weak fields, or equivalently, as being of order n − n(O) in the g

2We use mostly positive signature and R = gµρgνσRµνρσ. The Fierz-Pauli action
R

dDx(− 1
2
∂µhρσ∂µhρσ + · · · ) is recuperated modulo boundary terms from 1

(ℓp)D−2

R

dDx
√
−gR(g) upon

substituting gµν = ηµν +
√

2(ℓp)
D−2

2 hµν .
3The initial choice of free kinetic terms affects the classical anomaly and the final form of anomaly

cancelation terms.
4Repeated indices distinguished by sub-indexation are implicitly symmetrized, so that e.g. gµ(2)F

′

µ(s−2) ≡
g(µ1µ2

F ′

µ3...µs) where (· · · ) denotes symmetrization with strength one. Moreover, ∇ · Vµ(s−1) ≡ ∇νVνµ(s−1)

and V ′

µ(s−2) ≡ gνρVνρµ(s−2).

– 3 –
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expansion. Under the spin-s gauge transformation δεφµ(s) = s∇µ1εµ(s−1) +Rµ(s)[gαβ , φ, ε]

and δεgµν = Rµν [gαβ , φ, ε], where ε is a weak traceless parameter and Rµ(s) and Rµ(2) are

quadratic in weak fields, the variation of the action picks up the first-order contribution

δε

∫
G =

∫
W µνρσ

Aµν,ρσ(gαβ ;∇φ⊗ ε) , (1.4)

where the bilinear form

Aµν,ρσ = 2s(s− 1)PW
[
∇µφνστ(s−2)ερ

τ(s−2)

+(s− 2)
(
∇σφ

′
ντ(s−3) −

1

2
∇ · φνστ(s−3) +

(s− 3)

4
∇τ1φ

′
νστ(s−4)

)
εµρ

τ(s−3)
]
, (1.5)

that has been shown to be anomalous for s = 3 [3] (for recent re-analysis see [7] and also [6]

for an S-matrix argument) in the sense that it cannot be canceled by any choice of β(2)

nor by abandoning the assumption that the Lagrangian contains at most two derivatives.

However, as first realized by Fradkin and Vasiliev [11], if both Λ 6= 0 and higher-

derivative terms are added to the cubic part of the action, the analogous obstruction can

be bypassed. In the weak-field expansion the resulting minimal cubic action reads

SΛ
2ss[g, φ] =

1

ℓD−2
p

∫
(R(g) − Λ +GΛ) +

nmin(s)∑

n=2
n even

1

ℓD−2
p

∫
V

(n)
Λ (2, s, s) , (1.6)

V
(n)
Λ (2, s, s) =

1

2λn−2

∑

p+q=n−2

Wµνρσβ
µν,ρσ
(n);p,q

(∇pφ⊗∇qφ) , (1.7)

with λ2 ≡ − Λ
(D−1)(D−2) , andGΛ = G−1

2λ
2M2

s (φ⊗2) withG defined in (1.2), andM2
s (φ⊗2) =

m2
sφ

2+m′2
s φ

′2. At zeroth order, the spin-s gauge invariance requires the critical masses [13]

m2
s = s2 + (D − 6)s − 2D + 6 , m′2

s = −1

2
s(s− 1)

[
s2 + (D − 4)s −D + 1

]
. (1.8)

Up to first order, the invariance uses zeroth order on-shell conditions

[∇µ,∇ν ]Vρ = Rµνρ
σVσ ≈ 2λ2gρ[νVµ] +Wµνρ

σVσ , ∇µWµν,ρσ ≈ 0 , (1.9)

Rµν − 1

2
(R− Λ)gµν ≈ 0 , Fµ(s)−λ2

(
m2

sφµ(s)+s(s− 1)gµ(2)φ
′
µ(s−2)

)
≈ 0 , (1.10)

where Fµ(s) is defined in (1.3). At first order, the classical anomaly
∫
WA , which is

independent of λ, is accompanied by two types of λ-independent counter terms, namely

δε
∫
V

(2)
Λ plus the contributions to δε

∫
V

(4)
Λ from the constant-curvature part of [∇,∇],

that can be arranged to cancel the anomaly at order λ0. At order λ−2, the remaining

terms in δε
∫
V

(4)
Λ can be canceled against order λ−2 contributions from δε

∫
V

(6)
Λ and so

on, until the procedure terminates at the top vertex V top
Λ (2, s, s) = V

(nmin(s))
Λ that: (i) is

weakly gauge invariant up to total derivatives and terms that are of lower order in λ; and

(ii) contains a total number of derivatives given by

nmin(s) = 2s − 2 . (1.11)

– 4 –
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Counting numbers of derivatives, there is a gap between the top vertex and the tail of

Born-Infeld-like non-minimal cubic vertices, which is a priori of the form

Snm
2ss;Λ =

∞∑

n=0

1

(ℓp)D−22λ2(n+s)

∑

p+q=2n

∫
Wµνρσγ

µβ,ρσ

(n);p,q
(∇pC ⊗∇qC) , (1.12)

where Cµ(s),ν(s) is the linearized spin-s Weyl tensor and γ(n);p,q are dimensionless bilinear

forms. Adapting the flat-space result of [4] to constantly curved backgrounds suggests that,

if the γ(n);p,q fall off with n sufficiently fast, then the couplings with n > 1 can be removed

by a suitable, possibly non-local, field redefinition. More generally, turning to higher orders

in the weak-field expansion, one may adopt the canonical frame of standard fields that by

definition minimizes the maximal numbers of derivatives at each order.

The existence of at least one cancelation procedure has sofar been shown in the lit-

erature only for D = 4, 5 [11, 14, 15], following the existence of a more general minimal

cubic action given within the frame-like formulation based on a nonabelian higher-spin

Lie algebra extension h of so(D + 1; C). The 4D action is a natural generalization of the

MacDowell-Mansouri action for Λ-gravity. It is given by a four-form Lagrangian based on

a bilinear form < ·, · >h such that the resulting action: (i) contains at most 2 derivatives

at second order in weak fields; (ii) propagates symmetric rank-s tensor gauge fields with

s > 1 and critical mass; (iii) contains nonabelian V
(n)
Λ (s, s′, s′′) vertices with s, s′, s′′ > 1

and n 6 nmin(s, s
′, s′′). The 5D action shares the same basic features [14, 15]. The ex-

istence issue in D > 5 is open at present though all indications sofar hint at that the

lower-dimensional cases do actually have a generalization to arbitrary D.

1.3 Recovering the metric-like FV 2-3-3 vertex

Apparently Fradkin and Vasiliev first found the gravitational coupling of the spin-3 field

using the metric-like formalism without publishing their result (see [16] for an account).

Later they obtained and published their (by now famous) result in the frame-like formalism

in the general 2 − s − s case in D = 4 [11]. For the purpose of discussing the uniqueness

of their result and its extension to D dimensions, we need the explicit form of the D-

dimensional 2− 3− 3 FV vertex. To this end, we work within the metric-like formulation

and start from the free Lagrangian L2 + L3 where Fronsdal’s Lagrangian for a symmetric

rank-s tensor gauge field in AdSD reads [17]

− Ls√−ḡ =
1

2
∇µφα1...αs∇

µ
φα1...αs − 1

2
s∇µ

φµα1...αs−1∇νφ
να1...αs−1

+
1

2
s(s− 1)∇αφ

′
β1...βs−2

∇µφ
µαβ1...βs−2 − 1

4
s(s− 1)∇µφ

′
α1...αs−2

∇µ
φ′α1...αs−2

−1

8
s(s− 1)(s − 2)∇µ

φ′µα1...αs−3
∇νφ

′να1...αs−3

+
1

2
λ2

[
s2 + (D − 6)s− 2D + 6

]
φα1...αsφ

α1...αs

−1

4
λ2s(s− 1)

[
s2 + (D − 4)s −D + 1

]
φ′α1...αs−2

φ′α1...αs−2 , (1.13)

– 5 –
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given that Rαβγδ = −λ2(ḡαγ ḡβδ − ḡβγ ḡαδ). We find, using the Mathematica package

Ricci [18], that the 2-3-3 FV vertex is given by5

−
(3)

L FV√−ḡ ≈ −11

2
wαβγδ φ

αγ
µφ

βδµ +
1

(D − 1)λ2
wαβγδ

[
2 φ′µ∇

(β∇δ)
φαγµ + φαγ

µ∇
(δ∇µ)

φ′β

−3 φ′α∇(δ∇µ)
φβγ

µ + 2 φα
µν∇

(δ∇ν)
φβγµ + ∇µφ

αγµ∇νφ
βδν

−φαγµ∇(µ∇ν)φ
βδν − 2 ∇(µ

φν)αγ∇µφ
βδ

ν − 2 φαγ
µ∇

(δ∇ν)
φβµ

ν

+φ′α∇(β∇δ)
φ′γ − φα

µν∇
(β∇δ)

φγµν
]
. (1.14)

The first term corrects the obstruction to the standard minimal scheme at the expense of

introducing a new one that can be removed, however, by adding the above particular com-

bination of two-derivative terms (involving only a subset of all possible tensorial structures

as expected from the frame- like formulation). We stress again that the top vertex does

not introduce any further obstructions, and that the vertex indeed exhibits the gap.

1.4 Non-uniform Λ → 0 limits

Since for given s the derivative expansion of the minimal 2 − s− s coupling terminates at

the top vertex V
(2s−2)
Λ (2, s, s), the cubic action SΛ

2ss admits the scaling limit

λ = ε(ℓp)
−1 , W = ε2s−4W̃ , ε → 0 , (1.15)

with evanescent piece W̃µνρσ held fixed, so that W̃µνρσ can be replaced by the linearized

Weyl tensor w̃µνρσ in the cubic vertices, resulting in the action

S̃Λ=0
2ss [g, φ] =

1

ℓD−2
p

∫
dDx

√−g
(
R(g) +G0 + Ṽ

(2s−2)
0 (2, s, s)

)
, (1.16)

Ṽ
(2s−2)
0 (2, s, s) =

1

2

∑

p+q=2s−4

∫
w̃µνρσβ

µν,ρσ
(n);p,q

(∇pφ⊗∇qφ) , (1.17)

that is faithful up to cubic order in weak graviton and spin-s fields, and G0 contains the

connection ∇0 obeying the flatness condition [∇0,∇0] = 0.

Alternatively, one may first perturbatively expand the FV action around AdS and then

take the Λ → 0 limit as follows:

λ = εℓ̃−1
p , ℓp = ε∆p ℓ̃p , (1.18)

hµν = ε∆h h̃µν , φµνρ = ε∆φ φ̃µνρ , ε → 0 , (1.19)

5We use conventions where hαβ and φαβγ are dimensionless. The linearized spin-2 Weyl tensor

wαβγδ = sαβγδ− 2
D−2

(ḡα[γsδ]β− ḡβ[γsδ]α)+ 2
(D−1)(D−2)

ḡα[γ ḡδ]βs, where sαβγδ ≡ −∇γ∇[αhβ]δ +∇δ∇[αhβ]δ +

λ2(ḡγ[αhβ]δ − ḡδ[αhβ]γ) has the property that at zeroth order ḡαβsαγβδ ≈ 0 and ∇α
sαβγδ ≈ 0. The form of

the 2-3-3 FV vertex given in (1.14) reflects the initial choice of free Lagrangian made in (1.13).

– 6 –
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with ℓ̃p, h̃ and φ̃ kept fixed and ∆h = ∆φ = 2(s − 2) and ∆p = 4(s−2)
D−2 . The resulting

flat-space 2-3-3 vertex reads

−
(3)

L =
1

D − 1
w̃αβγδ

[
2 φ̃′µ∂

β∂δφ̃αγµ + φ̃αγ
µ∂

δ∂µφ̃′β − 3 φ̃′α∂δ∂µφ̃βγ
µ

+2 φ̃α
µν∂

(δ∂ν)φ̃βγµ + ∂µφ̃
αγµ∂ν φ̃

βδν − φ̃αγµ∂µ∂ν φ̃
βδν

−2 ∂(µφ̃ν)αγ∂µ φ̃
βδ

ν − 2 φ̃αγ
µ∂

δ∂ν φ̃βµ
ν + φ̃′α∂β∂δφ̃′γ − φ̃α

µν∂
β∂δφ̃γµν

]
(1.20)

where w̃αβγδ = K̃αβγδ − 2
D−2 (ηα[γK̃δ]β − ηβ[γK̃δ]α) + 2

(D−1)(D−2) ηα[γηδ]βK̃ with K̃αβγδ =

−∂γ∂[αh̃β]δ + ∂δ∂[αh̃β]δ.

As discussed above, the top 2-3-3 vertex must be equivalent modulo total derivatives

and linearized equations of motion to the nonabelian 2-3-3 vertex presented in appendix B

of [7] which we have verified explicitly.6

1.5 Uniqueness of the 2 − 3 − 3 FV vertex

The uniqueness of the FV cancelation procedure in the case of spin s = 3 can be now be

established for any D as follows. We obtained the AdSD covariantization

SΛ[h, φ] = SΛ
free + g SΛ

cubic

of the nonabelian flat spacetime action

SΛ=0[h, φ] = SFlat
free + g SFlat

cubic

obtained in [7], with SΛ=0
cubic =

∫
dDxV

(4)
0 (2, 3, 3) and g the deformation parameter. The

cubic part SΛ
cubic =

∫
dDx

√−g VΛ(2, 3, 3) possesses an expansion in powers of the AdS

radius, where the contribution to VΛ(2, 3, 3) with the maximum number of derivatives

is called V top
Λ (2, 3, 3) . We recall that, using the power of the BRST-BV cohomological

method [9], the first-order deformation SΛ=0[h, φ] has been proved [7] to be unique under

the sole assumptions of

• Locality,

• Manifest Poincaré invariance,

• Nonabelian nature of the deformed gauge algebra.

The last assumption allows the addition of Born-Infeld-like cubic vertices of the form

V BI
0 (2, 3, 3) = C(h)C(φ)C(φ) where C(h) and C(φ) denote linearized Weyl tensors and

we note that C(φ) contains 3 derivatives [19]. Such vertices are strictly gauge invariant and

do not deform the gauge algebra nor the transformations. We also disregard deformations

6Modulo the Bianchi identities of Rµν , there are 49 four-derivative terms that are proportional to the

spin-2 field equations: 25 terms of the form R..∂
2
..φ...φ... and 24 terms of the form R..∂.φ...∂.φ.... Adding

an arbitrary linear combination of these to the vertex, lifting the derivatives from h̃, subtracting the

“cohomological” vertex, and finally factoring out the spin-3 equations of motion by eliminating ∂2φ, yields

a simple system of equations that allow us to fit the coefficients.

– 7 –
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of the transformations that do not induce nonabelian gauge algebras, as is the case for such

deformations involving the curvature tensors. In the following, when we refer to a defor-

mation as unique it should be understood to be up to the addition of other deformations

that do not deform the gauge algebra.

The uniqueness of SΛ=0[h, φ] is instrumental in showing the uniqueness of its AdSD

completion SΛ[h, φ] , due to the linearity of the perturbative deformation scheme and the

smoothness of the flat limit at the level of cubic actions. The proof goes as follows. First

suppose that there exists another action S′Λ[h, φ] = SΛ
free+g S

′Λ
cubic that admits a nonabelian

gauge algebra and whose top vertex V ′top
Λ (2, 3, 3) involves ntop derivatives with ntop 6= 4.

Then, this action would scale to a nonabelian flat-space action whose cubic vertex would

involve ntop derivatives. This is impossible, however, because the only nonabelian cubic

vertex in flat space is V
(4)
0 (2, 3, 3) . Secondly, suppose there exists a nonabelian action

S′′Λ[h, φ] = SΛ
free+g S

′′Λ
cubic whose top vertex contains 4 derivatives but is otherwise different

from V top
Λ (2, 3, 3). Then its flat limit would yield a theory with a cubic vertex, involving

4 derivatives, but different from V top
0 (2, 3, 3) , which is impossible due to the uniqueness

of the latter deformation. Thirdly, and finally, suppose there exists a cubic action with

top vertex V top
Λ (2, 3, 3) but differing from SΛ

cubic in the vertices with lesser numbers of

derivatives. By the linearity of the BRST-BV deformation scheme, the difference between

this coupling and SΛ
cubic would lead to a nonabelian theory in AdS with top vertex involving

less than 4 derivatives. Its flat-space limit would therefore yield a nonabelian action whose

top vertex would possess less than 4 derivatives, which is impossible due to the uniqueness

of SΛ=0[h, φ] .

A more rigorous proof can be stated entirely in terms of master actions within the

BRST-BV framework. Then all ambiguities resulting from trivial field and gauge parameter

redefinitions are automatically dealt with cohomologically. Moreover, the possibility of

scaling away the nonabelianess while at the same time retaining the vertex is ruled out.7

1.6 On separation of scales in higher-spin gauge theory

Thanks to Vasiliev’s oscillator constructions [20, 21] it has been established that fully

nonlinear nonabelian higher-spin gauge field equations exist in arbitrary dimensions in

the case of symmetric rank-s tensor gauge fields. Compared to the cubic actions, the

full equations exhibit two additional essential features: (i) a precise spectrum D given by

an infinite tower of so(D + 1; C) representations forming a unitary representation of (a

real form of) the higher-spin algebra h (see e.g. [22]); (ii) nonlocal, potentially infinite,

Born-Infeld tails.

The closed form of Vasiliev’s equations requires the unfolded formulation of field the-

ory whereby [16, 23 – 25]: (i) standard physical (gauge) fields are replaced as independent

7Consider a master action Wλ =
(0)

Wλ +g
(1)

Wλ + · · · with
(1)

Wλ=
R

(aλ
2 + aλ

1 + aλ
0 ) where aλ

2 , aλ
1 and aλ

0 ,

respectively, contain the nonabelian deformation of the gauge algebra, the corresponding gauge transforma-

tions and vertices. The master equation amounts to γλaλ
2 = 0, γλaλ

1 + δλaλ
2 = dcλ

1 and γλaλ
0 + δλaλ

1 = dcλ
0

where γλ and δλ have λ expansions starting at order λ0. Since the system is linear and determines aλ
1 and

aλ
0 for given aλ

2 it follows that all aλ
i scale with λ the same way in the limit λ → 0.
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action variables by differential forms taking their values in so(D + 1; C) modules that are

finite-dimensional for p-forms with p > 0 and infinite-dimensional for zero-forms; (ii) the

resulting kinetic terms feature only the exterior derivative d; (iii) the standard interac-

tions are mapped to non-linear structure functions appearing in the unfolded first-order

equations obeying algebraic conditions assuring d2 = 0. Thus the on-shell content of a

spin-s gauge field φs is mapped into an infinite-dimensional collection of zero-forms car-

rying traceless Lorentz indices filling out the covariant Taylor expansion on-shell of the

corresponding Weyl tensor C(φs). Letting Xα denote the complete unfolded field content,

the unfolded equations take the form dXα + fα(Xβ) = 0 where fα are written entirely

using exterior algebra, and subject to the algebraic condition fβ ∂l

∂Xβ f
α = 0 (defining what

is sometimes referred to as a free-differential algebra [26 – 28]). The salient feature of the

unfolded framework is that any consistent deformation is automatically gauge-invariant in

the sense that every p-form with p > 1 is accompanied by a (p− 1)-form gauge parameter,

independently of whether the symmetry is manifestly realized or not.

Vasiliev’s equations provide one solution to the on-shell deformation problem given

a one-form A taking its values in the algebra h, and a zero-form Φ containing all Weyl

tensors and their on-shell derivatives, which is the unfolded counterpart of the mass-

less representation D. The embedding of the canonical fields {gµν , φ, . . . } into Φ and

A requires a non-local field redefinition8 to microscopic counterparts {ĝµν , φ̂, . . . }. In the

microscopic frame, the standard field equations are non-canonical and actually contain

infinite Born-Infeld tails already at first order in the weak-field expansion (see [30] for

a discussion). For example, the first-order corrections to the stress tensor, defined by

R̂µν − 1
2 ĝµν(R̂ − Λ) = T̂µν , from a given spin s arise in a derivative expansion of the form

T̂
(1)
µν =

∑∞
n=0

∑
p+q=2n λ

−2nT̂
(n);p,q
µν (∇̂pφ̂s, ∇̂qφ̂s) where ∇̂pφ̂s is a connection if p < s and

(p − s) derivatives of C(φ̂s) if p > s (see e.g. [31] for the case of s = 0).

As discussed below (1.12), the microscopic tails should be related to the canonical

vertices via non-local, potentially divergent, field redefinitions. Thus one has the following

scheme:

Unfolded
master-field
equations

weak

fields

⇆

Standard-exotic
microscopic

field equations

non − local

field redef.

⇄

Standard-exotic
canonical

field equations
(1.21)

Thus, the weak-field expansion, whether performed in the microscopic or canonical frames,

leads to amplitudes depending on the following three quantities: (i) a dimensionless AdS-

Planck constant g2 ≡ (λℓp)
D−2 that can always be taken to obey g << 1 and that counts

the order in the perturbative weak-field expansion, where ℓp enters via the normalization

of the effective standard action and we are working with dimensionless physical fields; and

(ii) a massive parameter λ that simultaneously (iia) sets the infrared cutoff via Λ ∼ λ2

and critical masses M2 ∼ λ2 for the dynamical fields; and (iib) dresses the derivatives in

8The situation in higher-spin gauge theory is analogous to that in string theory: in both cases the

microscopic formulation is defined in terms of “vertex operators” living in an associative algebra associated

with an “internal” quantum theory. As a result, the graviton vertex receives corrections leading to a

microscopic frame that is different from the canonical Einstein frame (see [29] for a related discussion).
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the interaction vertices thus enabling the Fradkin-Vasiliev (FV) mechanism; and (iii) the

weak-field fluctuation amplitudes9 |∇nC(φ)| ∼ (λℓ)−s−n|φ| where ℓ is the characteristic

wavelength of the bulk fields.

We stress that what makes higher-spin theory exotic is the dual purpose served by λ

within the FV mechanism whereby positive and negative powers of λ appear in critical

mass terms and higher-derivative vertices, respectively. Since the critical masses serve as

infra-red cutoffs, fluctuations around backgrounds that are close to the AdSD solution (with

unbroken higher-spin symmetry) have derivatives scaling like (ℓλ)−1 >> 1. Thus, in the

canonical weak-field expansion, the connected contributions 1
ℓD−2
p

∫
VΛ(s1, . . . , sN ) to N -

point amplitudesA(s1, . . . , sN |ℓλ; g) are dominated in the classical limit by strongly coupled

top-vertices V
(top)
Λ (s1, . . . , sN ) necessarily containing total numbers of derivatives ntop({si})

growing at least linearly with
∑

i si, suggesting that A(s1, . . . , sN |ℓλ; g) ∼ gN−2(ℓλ)−ntop({si})

(in particular, the contribution from the standard minimal gravitational two-derivative

couplings are washed out by the contributions from their associated top-vertices). The

non-uniform scaling behavior in {si} seems problematic, in comparison with ordinary (non-

exotic) field theories, in the sense that the perturbative expansion cannot be made weakly

coupled by choosing g small enough.

On the other hand, in the microscopic weak-field expansion scheme, the correspond-

ing amplitudes Â(s1, . . . , sN |ℓλ; g), computed using the microscopic field variables, contain

connected parts given by Born-Infeld tails which are power-series expansions in z = (ℓλ)−1.

These tails define special functions in the unphysical region |z| << 1 that one might try

to continue into the physical region |z| >> 1. The above discussions suggest that the am-

plitudes should be evaluated directly within Vasiliev’s master-field formalism, where the

microscopic fields are embedded into master fields that are operators (built perturbatively

from the microscopic fields and internal oscillators) that by assumption must belong to an

associative algebra in order for the full master-field equations to be consistent and hence

gauge invariant. Thus the problem of handling potentially divergent tails while maintain-

ing higher-spin gauge invariance is mapped to the possibly more transparent problem of

regularizing operator products while maintaining associativity. Indeed, related regulariza-

tions of operator products have been examined and found to be useful in the context of

classical solutions [29].

Finally, one may speculate that the non-uniform scaling behavior of the canonical

amplitudes A(s1, . . . , sN |ℓλ; g) might change after regularization such that the analytically

continued microscopic amplitudes Â(s1, . . . , sN |ℓλ; g) are bounded uniformly in {si} for

ℓλ << 1, making the perturbative expansion well-defined for g << 1, at least semi-classically.

2. Antifield formulation

2.1 Definitions

In this section we briefly recall the BRST deformation scheme [9] in the case of spin-s

9The gauge- invariant characterization of the amplitudes is provided by on-shell closed forms built from

Φ and A. A simple set of such “observables” are the zero-form charges found in [32].
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Fronsdal theory, that is irreducible and abelian. The containt of the present section is

mainly based on the works [33 – 35].

According to the general rules of the BRST-antifield formalism, a Grassmann-odd

ghost is introduced, which accompanies each Grassmann-even gauge parameter of the gauge

theory. It possesses the same algebraic symmetries as the corresponding gauge parameter.

In the cases at hand, it is symmetric and traceless in its spacetime indices. Then, to each

field and ghost of the spectrum, a corresponding antifield (or antighost) is added, with the

same algebraic symmetries but the opposite Grassmann parity. A Z-grading called ghost

number (gh) is associated with the BRST differential s, while the antifield number (antigh)

of the antifield Z∗ associated with the field (or ghost) Z is given by antigh(Z∗) ≡ gh(Z)+1 .

It is also named antighost number . More precisely, in the general class of theories under

consideration, the spectrum of fields (including ghosts) and antifields together with their

respective ghost and antifield numbers is given by (s > 2)

• the fields {Aµ, hµν , φµ1...µs} with ghost number 0 and antifield number 0;

• the ghosts {C,Cµ, Cµ1...µs−1} with ghost number 1 and antifield number 0;

• the antifields {A∗µ, h∗µν , φ∗µ1...µs} , with ghost number −1 and antifield number 1;

• the antighosts {C∗, C∗µ, C∗µ1...µs−1} with ghost number −2 and antifield number 2 .

If the pureghost number (pgh) of an expression simply gives the number of ghosts (and

derivatives of the ghosts) present in this expression, the ghost number (gh) is simply

given by

gh = pgh− antigh .

The fields and ghosts will sometimes be denoted collectively by ΦI , the antifields by Φ∗I .

The basic object in the antifield formalism is the BRST generator W0 . For a spin-1

field Aµ , a spin-2 field hµν and a (double-traceless) spin-s Fronsdal field φµ1...µs , it reads

W0,1 = SEM [Aµ] +

∫
A∗µ ∂µC dDx ,

W0,2 = SPF [hµν ] + 2

∫
h∗µν ∂(µCν) d

Dx ,

W0,s = SF [φµ1...µs ] + s

∫
φ∗µ1...µs ∂(µ1

Cµ2...µs) d
Dx .

The functional W0 satisfies the master equation (W0,W0) = 0, where ( , ) is the antibracket

given by

(A,B) =
δRA

δΦI

δLB

δΦ∗I
− δRA

δΦ∗I

δLB

δΦI
. (2.1)

Let us note that this definition is appropriate for both functionals and differentials forms.

In the former case, the summation over I also implies an integration over spacetime (de

Witt’s condensed notation). See the textbook [36] for a thorough exposition of the BRST

formalism.
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The action of the BRST differential s is defined by

sA = (W0 , A) .

The differential s is the sum of the Koszul-Tate differential δ (which reproduces the equa-

tions of motion and the Noether identities) and the longitudinal derivative γ (which repro-

duces the gauge transformations and the gauge algebra). Let us write down explicitly the

action of δ and γ (unless it is vanishing): For a spin-1 field:

δC∗ = −∂µA
∗µ , δA∗µ = ∂ρF

ρµ , γAµ = ∂µC .

For a spin-2 field:

δC∗ν = −2 ∂µh
∗µν , δh∗µν = −2Hµν , γhµν = 2 ∂(µCν) .

For a spin-s field:

δC∗µ1...µs−1 = −s
(
∂µsφ

∗µ1...µs − (s− 1)(s − 2)

2(D + 2s− 6)
η(µ1µ2∂µsφ

′∗µ3...µs−1)µs

)
,

δφ∗µ1...µs = Gµ1...µs , γφµ1...µs = s ∂(µ1
Cµ1...µs) ,

where Fµν = ∂µAν −∂νAµ and Kαβ|µν = −1
2(∂2

αµhβν +∂2
βνhαµ −∂2

ανhβµ −∂2
βµhαν) are the

Maxwell field-strength and the linearized Riemann tensor, respectively.10 The linearized

Einstein tensor is Hµν = Kµν − 1
2 ηµνK where Kβν = ηαµ Kαβ|µν is the linearized Ricci

tensor and K = ηβν Kβν the linearized scalar curvature. Finally, the flat-spacetime spin-s

Einstein-like and Fronsdal tensors Gµ1...µs and Fµ1...µs are given by

Gµ1...µs = Fµ1...µs −
s(s− 1)

4
η(µ1µ2

F ′
µ3...µs) ,

Fµ1...µs = �φµ1...µs − s ∂2
ρ(µ1

φρ

µ2...µs) +
s(s− 1)

2
∂2

(µ1µ2
φ′µ3...µs) .

For further purposes we also display the spin-s curvature

Kµ1ν1|...|µsνs
= 2s Y s(∂s

µ1...µs
φν1...νs) , s > 2 , (2.2)

where we have used the permutation operator

Y s =
1

2s

s∏

i=1

[e− (µiνi)]

that performs total antisymmetrization over the pairs of indices (µi, νi) , i = 1, . . . , s .

Finally, we note that the Fronsdal and curvature tensors are not quite independent. The

following relations can be established:

Kρ
νs−1|ρνs|µ1ν1|...|µs−2νs−2

= 2s−2 Y s−2(∂s−2
µ1...µs−2

Fν1...νs) ,

∂µsKµ1ν1|...|µsνs
= 2s−1 Y s−1(∂s−1

µ1...µs−1
Fν1...νs) .

In the following two subsections we give some cohomological results needed for the

BRST-BV analysis of the deformation problem.

10We use the notation ∂N
µ1...µN

≡ ∂µ1
. . . ∂µN

.
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2.2 Cohomology H∗(γ)

For a proof of general results, see [33]. The only gauge-invariant functions for a spin-s

gauge field are functions of the field-strength tensor Fµν , the Riemann tensor Kαβ|µν , the

Fronsdal tensor Fµ1...µs and the curvature tensor Kµ1ν1|µ2ν2|...|µsνs
. In pureghost number

pgh = 0 one has: H0(γ) = {f([Fµν ], [K], [Fs], [Ks], [Φ
∗I ])} where the notation [ψ] indicates

the (anti)field ψ as well as all its derivatives up to a finite (but otherwise unspecified) order.

In pgh > 0, it can be shown (along the same lines as in [7], appendix A) that one can choose

H∗(γ)-representatives as the products of an element of H0(γ) with an appropriate number

of non γ-exact ghosts. The latter are { C, Cµ, ∂[µCν], Cµ1...µs−1 } together with the

traceless part of Y j(∂µ1...µj
Cν1...νs−1) for j 6 s − 1 , that we denote U

(j)
µ1ν1|...µjνj |νj+1...νs−1

.

If we denote by ωi
J a basis of the products of these objects in pgh = i, we get:

H i(γ) ∼= {αJωi
J | αJ ∈ H0(γ)} . (2.3)

More generally, let {ωI} be a basis of the space of polynomials in these variables (since

these variables anticommute, this space is finite-dimensional). If a local form a is γ-closed,

we have

γa = 0 ⇒ a = αJ ωJ + γb . (2.4)

If a has a fixed, finite ghost number, then a can only contain a finite number of antifields.

Moreover, since the local form a possesses a finite number of derivatives, we find that the

αJ are polynomials. Such a polynomial αJ will be called an invariant polynomial .

We shall need several standard results on the cohomology of d in the space of invariant

polynomials.

Proposition 1. In form degree less than D and in antifield number strictly greater than

0 , the cohomology of d is trivial in the space of invariant polynomials. That is to say, if α

is an invariant polynomial, the equation dα = 0 with antigh(α) > 0 implies α = dβ where

β is also an invariant polynomial.

The latter property is rather generic for gauge theories (see e.g. ref. [34] for a proof), as

well as the following:

Proposition 2. If a has strictly positive antifield number, then the equation γa + db = 0

is equivalent, up to trivial redefinitions, to γa = 0. More precisely, one can always add

d-exact terms to a and get a cocycle a′ := a+ dc of γ, such that γa′ = 0.

2.3 Homological groups HD
2 (δ|d) and HD

2 (δ|d,H0(γ))

We first recall a general result (theorem 9.1 in [37]):

Proposition 3. For a linear gauge theory of reducibility order r,

HD
p (δ| d) = 0 for p > r + 2 .

– 13 –
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Since the theory at hand has no reducibility, we are left with the computation of

HD
2 (δ| d) . Then, as we already claimed in [7], for a collection of different spins, HD

2 (δ|d)
is the direct sum of the homologies of the individual cases.

For spin -1:

HD
2 (δ|d) =

{
ΛC∗ dDx | Λ ∈ R

}
.

For spin -2 :

HD
2 (δ|d) =

{
ξµC∗

µ d
Dx | ∂(µξν) = 0

}
. (2.5)

For spin -s (s > 2) ([33, 38]):

HD
2 (δ|d) =

{
ξµ1...µs−1C∗

µ1...µs−1
dDx | ∂(µ1

ξµ2...µs) = 0
}
. (2.6)

2.4 BRST deformation

As shown in [9], the Noether procedure can be reformulated within a BRST-cohomological

framework. Any consistent deformation of the gauge theory corresponds to a solution

W = W0 + gW1 + g2W2 + O(g3)

of the deformed master equation (W,W ) = 0. Taking into account field-redefinitions, the

first-order nontrivial consistent local deformations W1 =
∫
aD, 0 are in one-to-one corre-

spondence with elements of the cohomology HD, 0(s| d) of the zeroth order BRST differen-

tial s = (W0 , ·) modulo the total derivative d , in maximum form-degree D and in ghost

number 0 . That is, one must compute the general solution of the cocycle condition

saD, 0 + dbD−1,1 = 0 , (2.7)

where aD, 0 is a top-form of ghost number zero and bD−1,1 a (D− 1)-form of ghost number

one, with the understanding that two solutions of (2.7) that differ by a trivial solution

should be identified

aD, 0 ∼ aD, 0 + spD,−1 + dqD−1, 0

as they define the same interactions up to field redefinitions. The cocycles and coboundaries

a, b, p, q, . . . are local forms of the field variables (including ghosts and antifields). The

corresponding second-order interactions W2 must satisfy the consistency condition

sW2 = −1

2
(W1,W1) .

This condition is controlled by the local BRST cohomology group HD,1(s|d).
Quite generally, one can expand a according to the antifield number, as

a = a0 + a1 + a2 + . . . ak , (2.8)

where ai has antifield number i. The expansion stops at some finite value of the antifield

number by locality, as was proved in [39].
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Let us recall [10] the meaning of the various components of a in this expansion. The

antifield-independent piece a0 is the deformation of the Lagrangian; a1, which is linear in

the antifields associated with the gauge fields, contains the information about the defor-

mation of the gauge symmetries; a2 contains the information about the deformation of the

gauge algebra (the term C∗CC gives the deformation of the structure functions appearing

in the commutator of two gauge transformations, while the term φ∗φ∗CC gives the on-

shell closure terms); and the ak (k > 2) give the informations about the deformation of the

higher order structure functions and the reducibility conditions.

In fact, using standard reasonings (see e.g. [34]), one can remove all components of a

with antifield number greater than 2. The key point, as explained e.g. in [35], is that the

invariant characteristic cohomology Hn,inv
k (δ|d) controls the obstructions to the removal of

the term ak from a and that all Hn,inv
k (δ|d) vanish for k > 2 by Proposition 3 and theorem 2

proved in section B. This proves the first part of the following theorem 1, valid up to spin

s = 4:

Theorem 1. Let a be a local top form which is a nontrivial solution of the equation (2.7).

Without loss of generality, one can assume that the decomposition (2.8) stops at antighost

number two, i.e.

a = a0 + a1 + a2 . (2.9)

Moreover, the element a2 is cubic: linear in the antighosts and quadratic in the variables

{C,Cµ, ∂[µCν], Cµ1...µs−1 , U
(j6s−1)
µ1ν1|...|µjνj |νj+1...νs−1

}|s64 given in subsection 2.2.

Similarly to (2.9), one can assume b = b0 + b1 in (2.7) (see e.g. [34]) and insert the

expansions of a and b into the latter equation. Decomposing the BRST differential as

s = δ + γ yields

γa0 + δa1 + db0 = 0 , (2.10)

γa1 + δa2 + db1 = 0 , (2.11)

γa2 = 0 . (2.12)

The general solution of (2.12) is given in subsection 2.2.

Remark. Actually, even if the theorem 2 cannot be extended to s > 4 for technical

reasons, we can always assume that a2 is cubic as given in the above theorem 1, relax

the limitation s 6 4 and proceed with the determination of a1 and a0 according to (2.11)

and (2.10). In fact, it is impossible to build a ghost-zero cubic object with antigh > 2,

so a cubic deformation always stops at antigh 2. Moreover, a cubic element a2 must be

proportional to an antighost and quadratic in the ghosts, then, modulo d and γ, it is

obvious that the only possible cubic deformations are those given in theorem 1. Finally,

combining the cohomological approach with other approaches like the light-cone one [4, 5]

may complete our results, as we actually show in the following. Such a combination of two

different methods seems to us the most powerful way to completely solve the first-order

deformation problem.
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3. Consistent vertices V Λ=0(1, s, s)

In this section we use the antifield formalism reviewed above and apply it to the study of

nonabelian interactions between spin-1 and spin-s gauge fields. We first examine in detail

the interactions of the type 1 − 2 − 2 , and then move on to the general case 1 − s− s .

3.1 Exotic nonabelian vertex V Λ=0(1, 2, 2)

In this section we show the existence of a cubic cross-interaction between a spin 1 field and

a family of exotic spin 2 fields. The structure constants of this vertex are antisymmetric,

which is in contradiction with the result for self-interacting spin 2 fields (see [34]). In fact,

we easily prove that this vertex cannot coexist with the Einstein- Hilbert theory.

We consider in the following a set of fields in Minkowski spacetime of dimension D .

First, a single electromagnetic field Aµ with field strength Fµν = ∂µAν − ∂νAµ , invariant

under the gauge transformations
(0)

δΛ Aµ = ∂µΛ . Then, a family of Fierz-Pauli fields ha
µν

where a is the family index. The linearized Riemann tensor is Ka
αβ|µν

= −1
2(∂2

αµh
a
βν +

∂2
βνh

a
αµ − ∂2

ανh
a
βµ − ∂2

βµh
a
αν) . It is invariant under the linearized diffeomorphism gauge

transformations
(0)

δξ h
a
µν = 2∂(µξ

a
ν) . The linearized Einstein tensor is Ha

µν = Ka
µν − 1

2ηµνK
a ,

according to the notation given in section 2.1.

The free action is the sum of the electromagnetic action and the different Pauli-Fierz

actions:

S0 =

∫ (
−1

4
FµνF

µν − hµν
a Ha

µν

)
dDx . (3.1)

In order to study the cubic deformation problem efficiently, we have used the antifield

formalism of [9], reviewed in the present paper. The antifield formalism allows us to write

down every possible nontrivial deformation of the gauge algebra, encoded in the element

denoted a2 above. It turns out that only one a2 candidate gives rise to a consistent vertex

a0 . The details of the analysis are relegated to the appendix A, not to obscure the reading.

The cubic vertex, gauge transformations and gauge algebra are

(3)

L = l[ab]

[
−F ρσ∂[µh

a
ν]ρ∂

µhbν
σ + 2AσKa

µν|ρσ∂
µhbνρ

]
,

(1)

δξ Aρ = 2l[ab]∂[µh
a
ν]ρ∂

µξbν

(1)

δ ξ,Λ haνρ = 2l[ab]

[
ΛKb

νρ+
1

2
Fµ

ρ∂[µξ
b
ν]+

1

2
Fµ

ν∂[µξ
b
ρ]

]
− 1

D − 2
l[ab]ηνρ

[
ΛKb+Fµν∂µξ

b
ν

]

[
(0)

δ ξ,
(1)

δ η

]
Aµ +

[
(1)

δ ξ,
(0)

δ η

]
Aµ = ∂µΛ where Λ = 2l[ab]∂[µξ

a
ν]∂

µηbν . (3.2)

3.2 Exotic nonabelian vertex V Λ=0(1, s, s)

The structure that we have found can be easily extended to obtain a set of consistent

1 − s− s vertices. Using the notation introduced in section 2.1, the Fronsdal action reads

SFs =
1

2

∫
φµ1...µs

a Ga
µ1...µs

dDx . (3.3)
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It is gauge invariant thanks to the Noether identities

∂µsGa
µ1...µs

− (s − 1)(s − 2)

2(D + 2s− 6)
η(µ1µ2

∂µsG′a
µ3...µs−1)µs

≡ 0

and the symmetry of the second-order differential operator defining G .

The deformation analysis is performed exactly along the same lines as for the 1−2−2

vertex. The uniqueness of the solution has not been proved for spin s > 4, but we show

that it is the only cubic solution deforming the gauge algebra. The spin-2 solution can

be extended to spin s, which leads us to consider a deformation of the BRST generator

stoping at antighost 2, finishing with the following a2:

a2 = f[ab]C
∗Y s−1(∂s−1

µ1...µs−1
Ca

ν1...νs−1
)Y s−1(∂s−1µ1...µs−1Cbν1...νs−1)dDx . (3.4)

By solving the equation δa2 + γa1 = db1, we first obtain

a1 = ã1 + ā1 = 2f[ab]A
∗ρY s−1(∂s−1

µ1...µs−1
φa

ν1...νs−1ρ)Y
s−1(∂s−1µ1...µs−1Cbν1...νs−1)dDx+ ā1

with ā1 | γā1 = de1. The resolution of δa1 + γa0 = db0 provides us with both ā1 and a0 :

ā1 = 2f[ab]∂
(s−1)µ2...µs−1φ∗aρ1ρ2ν3...νs−1τDν1ν2σ

ρ1ρ2τ ×
[
Fµ1

σY
s−1(∂s−1

µ1...µs−1
Cb

ν1...νs−1
) − 1

2s−1
CKbµ1

σ|µ1ν1|...µs−1νs−1

]
dDx (3.5)

where

Dν1ν2σ
ρ1ρ2τ = δν1

ρ1
δν2
ρ2
δσ
τ − 1

2(D + 2s − 6)
ηρ1ρ2η

σν1δν2
τ − s− 2

D + 2s− 6
ηρ1ρ2η

σν2δν1
τ ,

a0 = −f[ab]F
ρσY s−1(∂s−1

µ1...µs−1
φa

ν1...νs−1ρ)Y
s−1(∂s−1µ1...µs−1φ

bν1...νs−1

σ)dDx

+f[ab]
1

2s−2
AρKa

µ1ν1|...|µs−1νs−1|ρσY
s−1(∂s−1µ1...µs−1φbν1...νs−1σ)dDx . (3.6)

These components ofW1 provide the cubic vertex, the gauge transformations and the gauge

algebra:

(3)

L = −f[ab]F
ρσY s−1(∂s−1

µ1...µs−1
φa

ν1...νs−1ρ)Y
s−1(∂s−1µ1...µs−1φ

bν1...νs−1

σ)

+f[ab]
1

2s−2
AρKa

µ1ν1|...|µs−1νs−1|ρσY
s−1(∂s−1µ1...µs−1φbν1...νs−1σ) , (3.7)

(1)

δ ξ Aµ = Y s−1(∂s−1
µ1...µs−1

φa
ν1...νs−1ρ)Y

s−1(∂s−1µ1...µs−1ξbν1...νs−1) (3.8)

(1)

δ Λ,ξ φaρ1ρ2ν3...νs−1τ =2(−1)s−1f[ab]D
ν1ν2σ
ρ1ρ2τ ∂

s−1µ2...µs−1

[
Fµ1

σY
s−1(∂s−1

µ1..µs−1
ξb
ν1...νs−1

)

− 1

2s−1
ΛKbµ1

σ|µ1ν1|...|µs−1νs−1

]
(3.9)

[
(0)

δ ξ,
(1)

δ η

]
Aµ+

[
(1)

δ ξ,
(0)

δ η

]
Aµ = ∂µΛ (3.10)

where

Λ = 2f[ab]Y
s−1(∂s−1

µ1...µs−1
ξa
ν1...νs−1

)Y s−1(∂s−1µ1...µs−1ηbν1...νs−1) , (3.11)

the other commutators vanishing.
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3.3 Exhaustive list of interactions V Λ=0(1, s, s)

The uniqueness of the above cubic nonabelian interactions can be obtained by combining

the above results with those obtained in [4, 5] using a powerful light-cone method. We

learn from the work [4] that there exist only two possible cubic couplings between one

spin-1 and two spin-s fields. The first coupling involves 2s − 1 derivatives in the cubic

vertex whereas the other involves 2s + 1 derivatives. Therefore we conclude that the first

coupling corresponds to the nonabelian deformation obtained in the previous subsection.

The other one simply is the Born-Infeld-like coupling

(3)

L = g[ab] F
ρσ ηλτ Ka

µ1ν1|...|µs−1νs−1|ρλ K
b µ1ν1|...|µs−1νs−1

στ | , (3.12)

which is strictly invariant under the abelian gauge transformations.

4. Uniqueness of the nonabelian V Λ=0(2, 4, 4) vertex

The computation of all the possible nonabelian 2 − 4 − 4 or 4 − 2 − 2 cubic vertices in

Minkowski spacetime of arbitrary dimension D > 3 can be achieved along the same lines

as for the 1 − s− s vertex. We can apply theorem 1 to find a complete list of the possible

a2 terms, thanks to the technical result about HD,inv
k (δ|d) that we provide in appendix B.

Then by solving equations (2.11) and (2.10), we find an unique cubic deformation.

First, it is easily seen that it is impossible to build a non trivial a2 involving one spin

4 and two spin 2. Then, in the 2 − 4 − 4 case, the highest number of derivatives allowed

for a2 to be nontrivial is 6, but Poincaré invariance imposes an odd number of derivatives.

Here is the only a2 containing 5 derivatives, which gives rise to a consistent cubic vertex:

a2 = fABC
∗
γU

A
αµ|βν|ρV

Bαµ|βν|γρdDx

where UA
µ1ν1|µ2ν2τ

= Y 2(∂2
µ1µ2

CA
ν1ν2τ ) and V A

µ1ν1|µ2ν2|µ3ν3
= Y 3(∂2

µ1µ2µ3
CA

ν1ν2ν3
).

Then, the inhomogeneous solution of δa2 + γa1 = db1 can be computed. The structure

constants have to be symmetric in order for a1 to exist: fAB = f(AB)

a1 = ã1 + ā1 = f(AB)

[
h∗ σ

γ ∂2
αβφ

A
µνρσV

Bαµ|βν|γρ − 2h∗γσ∂3
αβ[γφ

A
ρ]µνσU

Bαµ|βν|ρ
]
dDx+ ā1 .

Finally, the last equation is δa0 +γa1 = db0. It allows a solution, unique up to redefinitions

of the fields and trivial gauge transformations. We have to say that the natural writing of

a2 and the vertex written in terms of the Weyl tensor wαβ|γδ do not match automatically. In

order to get a solution, we first classified the terms of the form w∂4(φφ). Then we classified

the possible terms in ā1, which can be chosen in H1(γ). So they are proportional to the

field antifields, proportional to a gauge invariant tensor (KPF , F4 or K4) and proportional

to a non exact ghost. Finally, we had to introduce an arbitrary trivial combination in

order for the expressions to match. The computation cannot be made by hand (there are

thousands of terms). By using the software FORM [40], we managed to solve the heavy

system of equations and found a consistent set of coefficients. We obtained the following ā1:

ā1 =
4

D + 2
fABφ

′∗Aβ
α∂

τKµν|ασUB
µν|βσ|τd

Dx− 2fABφ
∗Aµρ

αβ∂
τKαν|βσUB

µν|ρσ|τd
Dx .
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and the cubic vertex:

a0,w ≈ fABwµνρσ

[ 1

2
∂µραφ′Aνβ∂αφ

′Bσ
β − 1

3
∂µραφAνβγδ∂αφ

Bσ
βγδ +

1

4
∂µραφAνβγδ∂βφ

Bσ
αγδ

+
3

4
∂µαβφ′Aνρ∂αφ

′Bσ
β +

3

4
∂µαβφAνργδ∂αφ

Bσ
βγδ −

3

2
∂µαβφAνρ

βγ∂αφ
′Bσγ

−1

2
∂µ

βγφ
Aνρα

δ∂αφ
Bσβγδ − 3

4
∂µαβφAσ

βγδ∂αφ
Bνργδ +

3

2
∂µαβφ′Aσγ∂αφ

Bνρ
βγ

− ∂µ
βγφ

′Aσα∂αφ
Bνρβγ +

1

2
∂µ

βγφ
Aσαγ

δ∂αφ
Bνρβδ − 1

2
∂αβγφ

Aµραδ∂δφ
Bνσβγ

+
1

2
∂αβγφ

Aµρατ∂βφBνσγ
τ +

1

8
∂αβφ′Aµρ∂αβφ

′Bνσ +
3

8
∂αβφAµργδ∂αβφ

Bνσ
γδ

−1

2
∂α

βφ
Aµρβγ∂αγφ

′Bνσ +
1

2
∂αβφ

Aµρβτ∂αγφBνσ
γτ − 3

4
∂αβφAµργδ∂αγφ

Bνσ
βδ

+
1

4
∂αβφ

Aµργδ∂γδφ
Bνσαβ

]
, (4.1)

where the weak equality means that we omitted terms that are proportional to the free

field equations, since they can trivially be absorbed by field redefinitions. The components

a1 and a2 correspond to the following deformation of the gauge transformations

(1)

δ ξ hστ =
1

2
fAB

[
ητµ3∂

2
µ1µ2

φA
ν1ν2ν3σY

3(∂3µ1µ2µ3ξBν1ν2ν3)

−2∂3
µ1µ2[τφ

A
ρ]ν1ν2σY

2(∂2µ1µ2ξBν1ν2ρ)
]

+ (σ ↔ τ) (4.2)

(1)

δ ξ φα1α2α3α4 =
4

D + 2
fABη(α3α4

δµ2
α1
∂τK

µ1ν1| ν2

α2) Y 2(∂2
µ1µ2

ξB
ν1ν2τ )

−2fABδ
µ1

(α1
δµ2
α2
∂τK

ν1 ν2

α3 |α4)
Y 2(∂2

µ1µ2
ξB
ν1ν2τ ) . (4.3)

and to the following deformation of the gauge algebra:
[

(0)

δ ξ,
(1)

δ η

]
hµν +

[
(1)

δ ξ,
(0)

δ η

]
hµν = 2∂(µjν)

where

jµ3 = f(AB)∂
2µ1µ2ξAν1ν2ν3Y 3(∂3

µ1µ2µ3
ηB

ν1ν2ν3
) − (ξ ↔ η)

Let us now consider the other possible cases for a2, containing 3 or 1 derivatives. The

only possibility with three derivatives is a2,3 = gABC
∗
β∂[αC

A
µ]νρ

UBαµ|βν|ρdDx. Its variation

under δ should be γ-closed modulo d but some nontrivial terms remain, of the types

gABh
∗UAUB and gABh

∗∂[.C
A
.]..V

B . The first one can be set to zero by imposing symmetric

structure constants, but the second cannot be eliminated. The same occurs for one of the

candidates with 1 derivative: a2,1,1 = kABC
∗βCAµνρ∂[βC

B
µ]νρ

dDx. We are then left with 2

candidates involving the spin 4 antifield. We have found that δa2 + γa1 = db1 can have a

solution only if their structure constants are proportional:

a2,1 = lABC
∗Aµνρ

[
Cα∂[αC

B
µ]νρ + 2∂[µCα]C

Bα
νρ

]
dDx

a1,1 = lABφ
∗µνρσ

[
2h α

σ ∂[αC
B
µ]νρ −

4

3
Cα∂[αφ

B
µ]νρσ + 8∂[µhα]σC

Bα
νρ − 2∂[µCα]φ

Bα
νρσ

]

+
2

D + 2
lAB∂σφ

′∗AρσCαφ′Bαρ .
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There is no homogenous part ā1 (because the γ-invariant tensors contain at least 2 deriva-

tives). Then, we have considered the most general expression for a0, which is a linear

combination of 55 terms of the types hφ∂2φ and h∂φ∂φ . We have found that the equation

δa1 + γa0 = db0 does not admit any solution. We can conclude that the vertex found with

6 derivatives is the unique nonabelian 2 − 4 − 4 cubic deformation.

This 2 − 4 − 4 vertex, setting D = 4, should correspond to the flat limit of the

corresponding Fradkin-Vasiliev vertex. The uniqueness of the former can be used to prove

the uniqueness of the latter, as we did explicitly in the 2 − 3 − 3 case.

5. Consistent vertices V Λ=0(2, s, s)

5.1 Nonabelian coupling with 2s− 2 derivatives

Our classification of gauge algebra deformations relies on the theorem concerning the ho-

mology HD,inv
k (δ|d). While apparently obviously true, it actually becomes increasingly

harder to prove with increasing spin. If HD,inv
k (δ|d) = HD

k (δ|d) ∩ H0(γ) holds for spin

s > 4 then there is only one candidates for a nonabelian type 2 − s − s deformation,

involving 2s − 3 derivatives in a2.

Let us recall that due to the simple expression of HD
2 (δ|d) we are only left with

a few traceless building blocks for a2: the antighosts C∗µ and C∗Aµ1...µs−1 , and a col-

lection of ghosts and their anti-symmetrized derivatives, namely Cµ, ∂[µCν] and tensors

U
(j)A
µ1ν1|...|µjνj |νj+1...νs−1

for j ≤ s − 1, that we have defined in section 2.2 [33]. Given this,

we can divide the a2 candidates into two categories: those proportional to C∗Aµ1...µs−1 and

those proportional to C∗µ.

The first category is simple to study: C∗Aµ1...µs−1 carries s− 1 indices, and the spin 2

ghost can carry at most 2, namely ∂[αCβ]. As no traces can be made, the spin 4 ghost can

carry at most s+ 1 indices. But U
(2)A
µ1ν1|µ2ν2|ν3...νs−1

contains two antisymmetric pairs which

cannot be contracted with C∗A. The only possible combination involving ∂[αCβ] is thus

fABC
∗Aµ1...µs−1∂[µ1

Cα]C
Bα

µ2...µs−1
dDx .

If we consider the undifferentiated Cα, the only possibility is obviously:

gABC
∗Aµ1...µs−1CαU

(1)A
αµ1|µ2...µs−1

dDx .

Those two terms contain only one derivative. Just as for the spin 4 case, we can show that

they are related to an a1 if fAB = s
2gAB :

a2,1 = gABC
∗Aµ1...µs−1

[
Cα∂[αC

B
µ1]µ2...µs−1

+
s

2
∂[µ1

Cα]C
Bα

µ2...µs−1

]
dnx (5.1)

and

a1,1 = lABφ
∗Aµ1...µs

[
s

2
h α

µs
∂[αC

B
µ1]µ2...µs−1

− s

s− 1
Cα∂[αφ

B
µ1]µ2...µs

+
s2

2
∂[µ1

hα]µs
CBα

µ2...µs
− s

2
∂[µ1

Cα]φ
Bα

µ2...µs

]

+
s(s− 2)

4(n+ 2s− 6)
lAB∂σφ

′∗Aµ3...µsCαφ′Bαµ3...µs−1
(5.2)

– 20 –



J
H
E
P
0
8
(
2
0
0
8
)
0
5
6

Then, the proof of the inconsistency of this candidate is exactly the same as for spin 4. In

fact, for every spin s ≥ 4, there are only 55 possible terms in the vertex. We have thus

managed to adapt the proof to spin s, this deformation is obstructed.

For the second category, the structure has to be C∗U (i)U (j) , i < j But C∗ carries one

index and U (i) carries i + s − 1. As no traces can be taken, it is obvious that i = j − 1,

which leaves us with a family of candidates:

a2,2j−1 = lABC
∗αU (j−1)Aµ1ν1|...|µj−1νj−1|νj...νs−1U

(j)B
µ1ν1|...|µj−1νj−1|ανj |νj+1...νs−1

dDx

Let us now check if these candidates satisfy the equation δa2 + γa1 = db1 for some a1.

For the second category, we get schematically δa2 = d(. . .) + γ(. . .) + lABh
∗U (j)AU (j)B +

lABh
∗U (j−1)AU (j+1)B . The first obstruction can be removed by imposing lAB = l(AB) while

the second cannot be removed unless j = s − 1. As the tensor U (s)B does not exist, this

term is not present at top number of derivatives, the second candidate a2 that correspond

to an a1 is then:

a2,2s−3 = lABC
∗αU (s−2)Aµ1ν1|...|µs−2νs−2|νs−1U

(s−1)B
µ1ν1|...|µs−2νs−2|ανs−1

dDx . (5.3)

5.2 Exhaustive list of cubic V Λ=0(2, s, s) couplings

Using the results of [4], we learn that there exist only three cubic couplings of the form

V Λ=0(2, s, s) . They involve a total number of derivatives in the vertex being respectively

2s + 2, 2s and 2s − 2 . Moreover, it is indicated [4] that the 2s -derivative coupling only

exists in dimension D > 4 . From our results of the last subsection, we conclude that the

last coupling is the nonabelian coupling with 2s− 2 derivatives. The coupling with 2s+ 2

derivatives is simply the strictly-invariant Born-Infeld-like vertex

(3)

L BI = t(ab)K
αβ|γδ K

a µ1ν1|...|µs−1νs−1

αβ| Kb
γδ|µ1ν1|...|µs−1νs−1

, (5.4)

whereas the vertex with 2s derivatives is given by

(3)

L 2s = u(ab) δ
[µνρσλ]
[αβγδε] h

α
µ K

a βγ| |µ1ν1|...|µs−2νs−2
νρ K

b δε|
σλ|µ1ν1|...|µs−2νs−2

. (5.5)

It is easy to see that this vertex is not identically zero and is gauge-invariant under the

abelian transformations, up to a total derivative.

6. Summary and conclusions

Already for Λ = 0 the notion of minimal coupling needs to be refined to account for

nonabelian vertices with more than two derivatives. Using the antifield formulation [9], in

order to prove that the first nonabelian vertex involving a set {φi} of fields is cubic, one

needs a technical cohomological result concerning the nature of Hk(δ|d) in the space of

invariant polynomials. This technical result has been obtained previously up to s = 3 and

has been pushed here up to s = 4 (cf. appendix B). Supposing that this result holds in

the general spin-s case, which is equivalent to supposing that the first nonabelian vertex
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is cubic, we have shown in section 5 that there exist only two possible nonabelian type

2− s− s deformations of the gauge algebra that can be integrated to corresponding gauge

transformations. One of these two candidates has 2s−3 derivatives and must therefore give

rise to a vertex with 2s−2 derivatives to be identified with the flat limit of the corresponding

FV 2− s− s top vertex [11, 12]. We have shown that the other candidate is obstructed. If

liftable to a vertex, it would have given the two-derivatives vertex that corresponds to the

minimal Lorentz covariantization. We have thus proved by cohomological methods what

has recently been obtained by other methods in [4 – 6].

Then, by combining our cohomological results with those of Metsaev [4], we explic-

itly built the exhaustive list of nontrivial, manifestly covariant vertices V Λ=0(1, s, s) and

V Λ=0(2, s, s) , notifying the relevant information concerning the nature of the deformed

gauge algebra.

For Λ 6= 0, the standard notion of Lorentz covariantization does apply although it only

provides the bottom vertex of a finite expansion in derivatives covered by inverse powers

of Λ, whose top vertices therefore dominate amplitudes (unless extra scales are brought

in e.g. by expansions around non-trivial backgrounds). The top-vertices scale with energy

non-uniformly for different spins rendering the standard semi-classical approach ill-defined

unless some additional feature shows up beyond the cubic level.

Indeed, Vasiliev’s fully non-linear higher-spin field equations may provide such a mech-

anism whereby infinite tails amenable to re-summation are developed. The two parallel

perturbative expansions in g and (ℓλ)−1 resembles those in gs and α′ℓ−2 in string theory

suggesting that the strong coupling at (ℓλ)−1 >> 1 corresponds to a tensionless limit of a

microscopic string (or membrane).11 Moreover, the geometric underpinning of Vasiliev’s

equations is that of flat connections and covariantly constant sections over a base-manifold

— the “unfold” — taking their values in a fiber. This suggests that the total system is

described by an action integrated over the unfold as well as the phase space of an in-

ternal microscopic quantum theory, with kinetic terms given by the sum of the exterior

derivative and the internal BRST operator [41]. In this formulation all components of the

master fields (including the auxiliary fields) are kept as independent variables, and the

problems associated with negative powers of λ are expected to resurface as problematic

operator products, although the details of this form of approach remain to be uncovered.

A candidate for the microscopic theory is the tensionless string/membrane in AdS whose

phase-space action has been argued in [41, 42] to be equivalent to a topological gauged

non-compact WZW model with subcritical level [43].
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Note Added. During the preparation of this manuscript there appeared the work [44]

that also addresses the issue of the AdS deformation of the nonabelian 3-3-2 flat-space

vertex found in [7].

A. The unique V Λ=0(1, 2, 2) vertex

A.1 The gauge algebra, transformations and vertex: a2, a1 and a0

Thanks to he considerations made above, and as Poincaré invariance is required, the only

nontrivial a2 terms are linear in the undifferentiated antigh 2 antifields and quadratic in

the non exact ghosts. Family indices can be introduced, which allows to multiply the terms

by structure constants. This construction is impossible for 2 spin 1 and 1 spin 2, while

there are 3 candidates for 1 spin 1 and 2 spin 2:

• a2,1 = f[ab]C
∗Ca

µC
bµdDx

• a2,2 = gabC
∗a
µ CCbµdDx

• a2,3 = l[ab]C
∗∂[µC

a
ν]∂

µCbνdDx

We must now check if the equation δa2 + γa1 = db1 admits solutions for the above

candidates. Let us note that homogenous solutions for a1 have to be considered: γā1 = db̄1 .

Thanks to Proposition 2, this equation can be redefined as γā1 = 0 . The non trivial ā1

are elements of H(γ), and, as they are linear in the fields, involve at least one derivative.

• δa2,1 = −f[ab]∂ρA
∗ρCa

µC
bµdDx

= 2f[ab]A
∗ρ∂ρC

a
µC

bµdDx+ d(. . .)

= −γ(f[ab]A
∗ρha

ρµC
bµdDx) + 2f[ab]A

∗ρ∂[ρC
a
µ]C

bµdDx+ d(. . .) . (A.1)

The second term can not be γ-exact, therefore the first candidate has to be discarded.

• δa2,2 = −2gab∂νh
∗aµνCCb

µd
Dx

= 2gabh
∗aµν

[
∂νCC

b
µ + C∂νC

b
µ

]
dDx+ d(. . .)

= −γ
(
gabh

∗aµν
[
2AµC

b
ν − Chb

µν

]
dDx

)
+ d(. . .) . (A.2)

As there is no homogenous solution with no derivatives, we can conclude that

a1,2 = gabh
∗aµν

[
2AµC

b
ν − Chb

µν

]
dDx+ γ(. . .) . (A.3)

Finally, applying the Koszul-Tate differential on the a2,3 gives

• δa2,3 = −l[ab]∂ρA
∗ρ∂[µC

a
ν]∂

µCbνdDx

= 2l[ab]A
∗ρ∂2

ρ[µC
a
ν]∂

µCbνdDx+ d(. . .)

= −γ
(
2l[ab]A

∗ρ∂[µh
a
ν]ρ∂

µCbνdDx
)

+ d(. . .) . (A.4)
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Here we may assume the existence of an homogenous solution:

a1,3 = ã1,3 + ā1,3 = 2l[ab]A
∗ρ∂[µh

a
ν]ρ∂

µCbνdDx+ ā1,3 | γā1,3 = 0 . (A.5)

Finally, we can compute the possible vertices a0, that have to be a solution of δa1 +

γa0 = db0 where a1 is one of the above candidates.

For the candidate a1,2, we get δa1,2 = −2gabH
aµν

[
2AµC

b
ν − Chb

µν

]
dDx. The second

term is γ-exact modulo d if gab = g[ab] (thanks to the properties of the Einstein tensor),

but the first one does not work (terms of the form ha
··∂

2
··A·C· have non vanishing coefficients

and are not γ-exact).

Let us now compute the solution a0,3, given that γ∂[µh
a
ν]ρ = ∂2

ρ[µC
a
ν] and ∂ρKa

µν|ρσ
=

2∂[µK
a
ν]σ:

δã1,3 = 2l[ab]∂σF
σρ∂[µh

a
ν]ρ∂

µCbν

= 2l[ab]∂
ρAσKa

µνρσ∂
µCbν + γ

(
l[ab]F

ρσ∂[µh
a
ν]ρ∂

µhbν
σ

)
+ d(. . .)

= −4l[ab]A
ρ∂[µK

a
ν]ρ∂

µCbν + 4l[ab]C∂[µK
a
ν]σ∂

µhbνσ

−γ
(
2l[ab]A

ρKa
µν|σρ∂

µhbνσ − l[ab]F
ρσ∂[µh

a
ν]ρ∂

µhbν
σ

)
+ d(. . .) .

The first two terms are δ-exact and correspond to a nontrivial ā1,3. The last two terms are

the vertex:

a0,3 = l[ab]

[
−F ρσ∂[µh

a
ν]ρ∂

µhbν
σ + 2AσKa

µν|ρσ∂
µhbνρ

]
dDx ,

ā1,3 = 2l[ab]h
∗aνρ

[
CKb

νρ + Fµ
ρ∂[µC

b
ν]

]
− 1

D − 2
l[ab]h

∗a′
[
CKb + Fµν∂µC

b
ν

]
+ γ(. . .) .(A.6)

A.2 Inconsistency with Einstein-Hilbert theory

Here we show that, as expected, the spin-2 massless fields considered in the previous section

cannot be considered as the linearized Einstein-Hilbert graviton. Let us consider the second

order in g in the master equation: it can be written (W1,W1) = −2sW2. Let us decompose

W2 according to the antighost number: W2 =
∫

(c0+c1+c2+. . .). We will just check here the

highest antighost part: (a2, a2) = −2γc2−2δc3 +d(. . .). But indeed, in any theory in which

a2 is linear in the antighost 2 antifields and quadratic in the ghosts, (a2, a2) cannot depend

on the antighost 1 antifields or on the fields, so that no δc3 can appear. This indicates that

the expansion of W2 stops at antighost 2 for those theories. But in fact, we get here:

(a2,3, a2,3) = 2
δa2,3

δC∗µ
a

δa2,3

δCa
µ

+ 2
δa2,3

δC∗

δa2,3

δC
= 0 .

This just means that the solution that we found is self-consistent at that order. But we

also have to check the compatibility with self-interacting spin 2 fields. Let us consider

the a2 for a collection of Einstein-Hilbert theories (this can be found in [34]): a2,EH =

f(abc)C
∗aµCbν∂[µC

c
ν], in which the coefficients fabc can be chosen diagonal. Let us now

compute

(a2,EH , a2,3) =
δa2,EH

δC∗ρ
e

δa2,3

δCe
ρ

= −2f e
bcleaC

bν∂[ρC
c
ν]∂τ

[
C∗∂[τC |a|ρ]

]

= γ(. . .) + d(. . .) − 2f e
bclaeC

∗ησν∂[τC
b
σ]∂[ρC

c
ν]∂

[τC |a|ρ] . (A.7)
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This can be consistent only if f e
(bcla)e = 0. But if we choose fabc diagonal, we obtain fa

aalba =

−2fa
ablaa = 0, which means that the f ’s or the l’s have to vanish. In other words, the spin

2 particles interacting with the spin 1 in our vertex cannot be Einstein-Hilbert gravitons.

B. Invariant cohomology of δ modulo d for spin 4

The following theorem is crucial, in the sense that it enables one to prove the uniqueness

of the deformations, within the cohomological approach of [9]:

Theorem 2. Assume that the invariant polynomial ap
k (p = form-degree, k = antifield

number) is δ-trivial modulo d,

ap
k = δµp

k+1 + dµp−1
k (k > 2). (B.1)

Then, one can always choose µp
k+1 and µp−1

k to be invariant.

To prove the theorem, we need the following lemma, proved in [34].

Lemma 1. If a is an invariant polynomial that is δ-exact, a = δb, then, a is δ-exact in

the space of invariant polynomials. That is, one can take b to be also invariant.

The proof of theorem 2 for spin-4 gauge field proceeds in essentially the same way as

for the spin-3 case presented in detail in [35], to which we refer for the general lines of

reasoning. We only give here the piece of proof where things differ significantly from the

spin-3 case.

Different situations are considered, depending on the values of p and k. In form degree

p < D , the proof goes as in [35]. In form degree p = D , two cases must be considered:

k > D and k 6 D . In the first case, the proof goes as in [35], the new features appearing

when p = D and k 6 D . Rewriting the top equation (i.e. (B.1) with p = D) in dual

notation, we have

ak = δbk+1 + ∂ρj
ρ
k , (k > 2). (B.2)

We will work by induction on the antifield number, showing that if the property expressed

in theorem 2 is true for k + 1 (with k > 1), then it is true for k. As we already know that

it is true in the case k > D, the theorem will be proved.

Inductive proof for k 6 D. The proof follows the lines of ref. [39] and decomposes in

two parts. First, all Euler-Lagrange derivatives of (B.2) are computed. Second, the Euler-

Lagrange (E.L.) derivative of an invariant quantity is also invariant. This property is used

to express the E.L. derivatives of ak in terms of invariants only. Third, the homotopy

formula is used to reconstruct ak from his E.L. derivatives. This almost ends the proof.

(i) Let us take the E.L. derivatives of (B.2). Since the E.L. derivatives with respect to

C∗
αβγ , the antifield associated with the ghost Cαβγ , commute with δ, we get first:

δLak

δC∗
αβγ

= δZαβγ
k−1 (B.3)
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with Zαβγ
k−1 =

δLbk+1

δC∗

αβγ
. For the E.L. derivatives of bk+1 with respect to h∗µνρσ we obtain,

after a direct computation,

δLak

δh∗µνρσ

= −δXµνρσ
k + 4∂(µZ

νρσ)
k−1 . (B.4)

where Xµνρσ
k =

δLbk+1

δh∗

µνρσ
. Finally, let us compute the E.L. derivatives of ak with respect

to the fields. We get:

δLak

δhµνρσ
= δY µνρσ

k+1 + G
µνρσ|αβγδXαβγδ|k (B.5)

where Y µνρσ
k+1 =

δLbk+1

δhµνρσ
and G µνρσ|αβγδ(∂) is the second-order self-adjoint differen-

tial operator appearing in Fronsdal’s equations of motion 0 = δSF [h]
δhµνρσ

≡ Gµνρσ =

G µνρσ|αβγδ hαβγδ . The hermiticity of G implies G µνρσ|αβγδ = G αβγδ|µνρσ .

(ii) The E.L. derivatives of an invariant object are invariant. Thus, δLak

δC∗

αβγ
is invariant.

Therefore, by Lemma 1 and eq. (B.3), we have also

δLak

δC∗
αβγ

= δZ ′αβγ
k−1 (B.6)

for some invariant Z ′αβγ
k−1 . Indeed, let us write the decomposition Zαβγ

k−1 = Z ′αβγ
k−1 +Z̃αβγ

k−1 ,

where Z̃αβγ
k−1 is obtained from Zαβγ

k−1 by setting to zero all the terms that belong only

to H(γ). The latter operation clearly commutes with taking the δ of something, so

that eq. (B.3) gives 0 = δZ̃αβγ
k−1 which, by the acyclicity of δ, yields Z̃αβγ

k−1 = δσαβγ
k

where σαβγ
k can be chosen to be traceless. Substituting δσαβγ

k + Z ′αβγ
k−1 for Zαβγ

k−1 in

eq. (B.3) gives eq. (B.6).

Similarly, one easily verifies that

δLak

δh∗µνρσ

= −δX ′µνρσ
k + 4∂(µZ

′νρσ)
k−1 , (B.7)

where Xµνρσ
k = X ′µνρσ

k + 4∂(µσ
νρσ)
k + δρµνρσ

k+1 . Finally, using G µνρσ
αβγδ ∂

(ασβγδ)
k = 0

due to the gauge invariance of the equations of motion (σαβδ has been taken traceless),

we find

δLak

δhµνρσ
= δY ′µνρσ

k+1 + G
µνρσ

αβγδX
′αβγδ
k (B.8)

for the invariants X ′µνρσ
k and Y ′µνρσ

k+1 . Before ending the argument by making use of

the homotopy formula, it is necessary to know more about the invariant Y ′µνρσ
k+1 .

Since ak is invariant, it depends on the fields only through the curvatureK, the Frons-

dal tensor and their derivatives. (We substitute 4∂[δ∂[γF
σ]

ρ] µν
for ηαβKδσ

|αµ|βν|γρ

everywhere.) We then express the Fronsdal tensor in terms of the Einstein tensor:
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Fµνρσ = Gµνρσ − 6
n+2 η(µνGρσ), so that we can write ak = ak([Φ

∗i], [K], [G]) , where

[G] denotes the Einstein tensor and its derivatives. We can thus write

δLak

δhµνρσ
= G

µνρσ
αβγδA

′αβγδ
k + ∂α∂β∂γ∂δM

′αµ|βν|γρ|δσ
k (B.9)

where

A′αβγδ
k ∝ δak

δGαβγδ

and

M ′αµ|βν|γρ|δσ
k ∝ δak

δKαµ|βν|γρ|δσ

are both invariant and respectively have the same symmetry properties as the “Ein-

stein” and “Riemann” tensors.

Combining eq. (B.8) with eq. (B.9) gives

δY ′µνρσ
k+1 = ∂α∂β∂γ∂δM

′αµ|βν|γρ|δσ
k + G

µνρσ
αβγδB

′αβγδ
k (B.10)

with B′αβγδ
k := A′αβγδ

k − X ′αβγδ
k . Now, only the first term on the right-hand-side

of eq. (B.10) is divergence-free, ∂µ(∂αβγM
′αµ|βν|γρ
k ) ≡ 0, not the second one which

instead obeys a relation analogous to the Noether identities

∂τGµνρτ − 3

(n+ 2)
η(µν∂

τG′
ρ)τ = 0 .

As a result, we have δ
[
∂µ(Y ′µνρσ

k+1 − 3
D+2 η

(νρY ′σ)µ
k+1)

]
= 0 , where Y ′µσ

k+1 ≡ ηνρY
′µνρσ
k+1 .

By Lemma 1, we deduce

∂µ

(
Y ′µνρσ

k+1 − 3

D + 2
η(νρY ′σ)µ

k+1

)
+ δF ′νρσ

k+2 = 0 , (B.11)

where F ′νρσ
k+2 is invariant and can be chosen symmetric and traceless. Eq. (B.11) deter-

mines a cocycle of HD−1
k+1 (d|δ), for given ν, ρ and σ . Using the general isomorphisms

HD−1
k+1 (d|δ) ∼= HD

k+2(δ|d) ∼= 0 (k > 1) [37] we deduce

Y ′µνρσ
k+1 − 3

D + 2
η(νρY ′σ)µ

k+1 = ∂αT
αµ|νρσ
k+1 + δPµνρσ

k+2 , (B.12)

where both T
αµ|νρσ

k+1 and Pµνρσ
k+2 are invariant by the induction hypothesis. Moreover,

T
αµ|νρσ
k+1 is antisymmetric in its first two indices. The tensors T

αµ|νρσ
k+1 and Pµνρσ

k+2 are

both symmetric and traceless in (ν, ρ, σ). This results easily from taking the trace of

eq. (B.12) with ηνρ and using the general isomorphisms HD−2
k+1 (d|δ) ∼= HD−1

k+2 (δ|d) ∼=
HD

k+3(δ|d) ∼= 0 [37] which hold since k is positive. From eq. (B.12) we obtain

Y ′µνρσ
k+1 = ∂α[T

αµ|νρσ

k+1 +
3

D
T

α|µ(ν
k+1 ηρσ)] + δ(. . .) (B.13)
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where T
α|µν

k+1 ≡ ητρT
ατ |ρµν

k+1 . We do not explicit the δ-exact term since it plays no role

in the following. Since Y ′µνρσ
k+1 is symmetric in µ and ν, we have also

∂α

(
T

α[µ|ν]
k+1 ρσ +

2

D
T

α|[µ
k+1 (σδ

ν]
ρ)

)
+ δ(. . .) = 0 .

The triviality of HD
k+2(d|δ) (k > 0) implies again that T

α[µ|ν]
k+1 ρσ + 2

D
T

α|[µ
k+1 (σδ

ν]
ρ) is

trivial, in particular,

∂βS
′βα|µν|

ρσ + δ(. . .) = T
α[µ|ν]
k+1 ρσ +

2

D
T

α|[µ
k+1 (σδ

ν]
ρ) (B.14)

where S
′βα|µν|

ρσ is antisymmetric in the pairs of indices (β, α) and (µ, ν), while it

is symmetric and traceless in (ρ, σ). Actually, it is traceless in µ, ν, ρ σ as the right-

hand side of the above equation shows. The induction assumption allows us to choose

S
′βα|µν|

ρσ, as well as the quantity under the Koszul-Tate differential δ . We now project

both sides of eq. (B.14) on the following irreducible representation of the orthogonal

group
α µ σ
ρ ν and obtain

∂βW
′β|αρ|µν|σ
k+1 + δ(. . . ) = 0 (B.15)

where W
′β|αρ|µν|σ
k+1 denotes the corresponding projection of S

′βα|µν|ρσ . Eq. (B.15)

determines, for given (µ, ν, α, ρ, σ) , a cocycle of HD−1
k+1 (d|δ,H(γ)). Using again the

isomorphisms [37] HD−1
k+1 (d|δ) ∼= HD

k+2(δ|d) ∼= 0 (k > 1) and the induction hypothesis,

we find

W
′β|αρ|µν|σ
k+1 = ∂λφ

λβ|αρ|µν|σ
k+1 + δ(. . . ) (B.16)

where φ
λβ|αρ|µν|σ
k+1 is invariant, antisymmetric in (λ, β) and possesses the irreducible,

totally traceless symmetry
α µ σ
ρ ν in its last five indices. The δ-exact term is invariant

as well. Then, projecting the equation (B.16) on the totally traceless irreducible

representation
α µ σ
ρ ν β and taking into account that W

′β|αρ|µν|σ
k+1 is built out from

S
′βα|µν|ρσ , we find

∂λΨ
′λ|αρ|µν|σβ

k+1 + δ(. . . ) = 0 (B.17)

where Ψ
′λ|αρ|µν|σβ
k+1 denotes the corresponding projection of φ

λβ|αρ|µν|σ
k+1 . The same

arguments used before imply

Ψ
′λ|αρ|µν|σβ
k+1 = ∂τΞ

′τλ|αρ|µν|σβ + δ(. . .) (B.18)

where the symmetries of Ξ
′τλ|αρ|µν|σβ on its last 6 indices can be read off from the

left-hand side and where the first pair of indices is antisymmetric. Again, Ξ
′τλ|αρ|µν|σβ

can be taken to be invariant.

Then, we take the projection of Ξ
′τλ|αρ|µν|σβ on the irreducible representation

τ α µ σ
λ ρ ν β

ofGL(D) (here we do not impose tracelessness) and denote the result by Θ
′τλ|αρ|µν|σβ .
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This invariant tensor possesses the algebraic symmetries of the invariant spin-4 curva-

ture tensor. Finally, putting all the previous results together, we obtain the following

relation, using the symbolic manipulation program Ricci [18]:

6Y ′µνρσ
k+1 = ∂α∂β∂γ∂δΘ

′αµ|βν|γρ|δσ
k+1 + G

µνρσ
αβγδX̂

′αβγδ
k+1 + δ(. . .) , (B.19)

with

X̂
′

αβγδ|k+1 :=
Y

µνρσ
αβγδ

D − 2

[
− 1

3
ητλSτµ|λν|ρσ|k+1

+
1

3(D + 1)
ηµνη

τληκζ(Sτκ|λζ|ρσ|k+1 + 2Sτκ|λρ|ζσ|k+1)

+
2(D − 2)

D
ηκτ∂λφκµ|λν|τρ|σ − 4(D − 2)

D(D + 2)
ηµνη

κτηξζ∂λφκξ|τζ|λµ|ν

]
(B.20)

being double-traceless and where Y
µνρσ

αβγδ projects on completely symmetric rank-4

tensors.

(iii) We can now complete the argument. The homotopy formula

ak =

∫ 1

0
dt

[
C∗

αβγ

δLak

δC∗
αβγ

+ h∗µνρσ

δLak

δh∗µνρσ

+ hµνρσ δLak

δhµνρσ

]
(th , th∗ , tC∗) (B.21)

enables one to reconstruct ak from its Euler-Lagrange derivatives. Inserting the

expressions (B.6)–(B.8) for these E.L. derivatives, we get

ak = δ
( ∫ 1

0
dt [C∗

αβγZ
′αβγ
k−1 + h∗µνρσX

′µνρσ
k + hµνρσY

′µνρσ
k+1 ](t)

)
+ ∂ρk

ρ. (B.22)

The first two terms in the argument of δ are manifestly invariant. In order to prove

that the third term can be assumed to be invariant in eq. (B.22), we use eq. (B.19)

to find that (absorbing the irrelevant factor 6 in a redefinition of Y ′µνρσ)

hµνρσ Y
′µνρσ
k+1 =

1

16
Θ

′αµ|βν|γρ|δσ
k+1 Kαµ|βν|γρ|δσ +GαβγδX̂

′αβγδ
k+1 + ∂ρℓ

ρ + δ(. . .) ,

where we integrated by part four times in order to get the first term of the r.h.s.

while the hermiticity of G µνρσ|αβγδ was used to obtain the second term.

We are left with ak = δµk+1 + ∂ρν
ρ
k , where µk+1 is invariant. That νρ

k can now

be chosen invariant is straightforward. Acting with γ on the last equation yields

∂ρ(γν
ρ
k) = 0 . By the Poincaré lemma, γνρ

k = ∂σ(τ
[ρσ]
k ) . Furthermore, Proposition 2

concerning H(γ| d) at positive antighost number k implies that one can redefine νρ
k

by the addition of trivial d-exact terms such that one can assume γνρ
k = 0 . As the

pureghost number of νρ
k vanishes, the last equation implies that νρ

k is an invariant

polynomial.
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